Injection Molding

3D Printing Digital Manufacturing Application

Custom Plastic Injection Molding

3D print molds for prototyping in the final material PolyJet 3D Printing has made it feasible to quickly create custom injection molds that produce low volumes of parts in the final production plastic. This is especially useful for prototypes, which can now be created onsite in just hours, from mold design to final test product, using the normal plastic injection molding process and production materials for accurate functional testing.

Custom Injection Molding With 3D Printed Tooling


Prototypes are most useful when they’re made of the same plastic as the final production part. And during product development, quick feedback is essential. But it’s hard to justify the cost to create injection molded prototypes when they require the same expensive, time-consuming tooling as production parts — even though you only need a small quantity of parts for testing.

3D printing your prototype molds in-house with PolyJet technology offers a fast, affordable way to produce injection molded prototypes. Designers and engineers can test their work more frequently and more accurately, and go to production with confidence. Product managers can shrink time to market and products can turn out better.

PolyJet Injection Molds

3d_printed_injection_molding_polyjet_digital_abs_material_objet500_connex3_stratasys_big
PolyJet technology creates smooth, detailed, accurate molds. Digital ABS 3D printing material is strong enough to hold up to short injection molding runs of about 10 to 100 parts. You can install the 3D printed mold directly onto your injection molding machine. If testing reveals that you need to make a design improvement, you can alter the mold in directly in CAD and 3D print the next iteration. Depending on size, the new mold can be printed and ready to inject in just a few hours.

PolyJet 3D printed molds are not production tools. But during the design and testing phase, they offer a clear advantage over conventional injection molding. Product designers and manufacturers can use these molds to perform thorough functional testing without worrying about cost-prohibitive tooling. Flaws based on the final production process, geometry or choice of plastic can be discovered early, when they are easiest to fix. This can reduce costly, time-consuming mold corrections, increase product innovation and speed product development.

When to Use PolyJet Tooling


PolyJet 3D Printing is a good method for creating prototype injection molds when:

  • Complex geometry would make traditional tooling difficult
  • Low quantities are needed
  • Design changes are likely
  • Rapid prototyping from the final production plastic is important

Stratasys End Arm Tooling

ToolingTools Without Tooling

3D printed tools, molds and tool masters add a new layer of cost efficiency and flexibility to the factory floor. Not only can you cost-effectively produce tools for prototype testing and manufacturing low volumes of final parts, you can create made-to-order assembly tools customized for each task. In addition, you can create a leaner manufacturing environment, enabling quick production of tools, when and where they’re needed to speed the manufacturing process and reduce costs.

Learn More

BMW Fdm Jig Hands - Jigs and Fixtures

Jigs & FixturesOptimized assembly tools, made to order

Improve manufacturing efficiency with job-specific jigs and assembly fixtures, 3D printed on demand in just hours. 3D printing tools directly from CAD data, on-demand, saves time, lowers costs and reduces inventory requirements. In addition, you can easily create customized lightweight, ergonomic tools that increase workflow efficiency.

Learn More

Injection Molding 3 - Connex3 Refresh

Injection Molding3D printed Injection molds

Agilus30 - Jelly Shoe - Bend 2

End-Use Parts3D print customized, low volume durable parts with fine details and smooth surface finishes

Stratasys additive manufacturing enables you to 3D print strong, functional final parts on demand directly from CAD data. Because the part is created digitally layer by layer, complex geometries and sophisticated features that would be difficult to produce using traditional manufacturing methods are now easily achieved with Stratasys additive manufacturing. Producing end use parts with Stratasys technology not only dramatically reduces your production costs and delivery times, it also reduces inventory while creating exciting new supply chain efficiencies and new business models.

Learn More

FDM Technology Banner

FDM Technologyfrom Stratasys

PolyJet Technology Banner

PolyJet Technologyfrom Stratasys

desktop-metal-3d-printing-technology-process

Metal Printing Technologyfrom Desktop Metal