Blow Molding

3D Printing Digital Manufacturing Tooling Applications

Ask A Question

Schedule A Demo

Request A Quote

Blow molding is a fast and economical process, but initial machining costs make design changes problematic. 3D printed molds are a great option for prototypes and short production runs, enabling testing and validation in final production plastics, and ultimately reducing development time and risk.

Blow Molding With PolyJet or FDM Tooling

Blow molding is a manufacturing process that makes hollow plastic parts, such as bottles and other containers. Manufacturing these items is rapid and cost efficient, but prototyping tends to be slow and costly. In the past, blow–molding companies have largely avoided prototyping due to high cost and long lead times. Blow–mold design and the specification of process parameters require skill and precision. A small change in the pinch–off or vent design, die temperature or blow pressure can dramatically affect the molding results. Prototyping enables designers to validate these parameters and accelerate design approval.

Blow molding uses many common plastics, including polystyrene, polycarbonate (PC) and polyvinylchloride, and resins including polyethylene.

The blow–molding process has three major variations: extrusion blow molding (EBM), injection blow molding (IBM) and injection stretch blow molding (ISBM).

EBM: An extruder drops a parison (hot, hollow tube of plastic) between two mold halves. One end of the gap is sealed and the other end is left open. Air is injected through the open end, forcing the malleable plastic against the mold walls. Upon cooling, the plastic retains the contour of the mold. This process can produce very large containers, but is not suitable for all materials.

IBM: This two–step process begins with injection molding a preform, which is then heated, placed in a blow mold and inflated. Compared with EBM, this process allows for more careful control over part walls and results in better transparency and surface quality. ISBM: This method incorporates an additional step where the injection–molded preform is heated, then mechanically stretched before inflation. This contributes to the part’s strength and wall uniformity.

Application Checklist

Patterns 3D printed with PolyJet or FDM are a best fit for blow molding when:

  • Production levels are low to moderate or custom
  • Multiple designs must be considered
  • Prototypes are required from the final plastic material
  • Design changes are likely

Benefits of PolyJet and FDM tools for blow molding include:

  • Lead time reduced by 30 to 70 percent
  • Prototype mold cost reduced by 40 to 80 percent
  • Stability, eliminating distortion with heat
  • Durability through hundreds of cycles
  • Little or no need for post processing

PolyJet or FDM 3D Printed Tools

3D printing with PolyJet or FDM Technology offers an opportunity to prototype blow–molded products faster and at lower cost. With PolyJet or FDM 3D printing, companies can design a mold, build the tool and blow mold near–production quality prototypes. Advances in PolyJet and FDM 3D printing, including improved surface quality, durability, build speed and cost, make blow-mold prototyping a much more rewarding process. The two Stratasys 3D printing platforms (PolyJet and FDM) can be applied to all three blow–molding methods.


  1. Designing the tool: It is important to design the tool with additive manufacturing in mind. Be sure vent areas relieve extreme temperature or pressure and the pinch design will be strong enough to function. Also, metal plates should be inserted on top to absorb the impact of the blowing pin against the mold.
  2. Printing the tool: Print the tool with either PolyJet or FDM technologies with the correct build orientation and parameters.
  3. Post processing: Perform secondary processing on the mold to alter its surface finish if desired. Insert locator pins or metal plates if necessary. Apply release agents or coatings to prevent blown plastic from sticking.
  4. Mounting: Insert the prototype mold halves into the match–plate cavities and align using the alignment pins (either designed into the part or inserted as a secondary process).
  5. Molding: Use the molding parameters required to increase mold life and maximize part quality.
  6. Evaluation: Determine whether the shape, mold design or parameters must change to build a successful production tool.


When using PolyJet or FDM for either an insert into a mold base cavity or a full tool, build proper clearances into the model so alignment pins or mold halves fit together. Orient the tool in the build chamber to give it the best surface finish and, depending on the goal of the prototype mold, use filler and sand the mold to get the desired surface. The filler will also help to seal the mold and produce a better part.

The material used to build a prototype mold should be heat–resistant enough to not deform after each cycle, and durable enough to last through as many cycles as necessary for prototyping. PolyJet and FDM 3D printing technologies each offer suitable materials.

The insulating properties of PolyJet and FDM materials affect cycle time. Options to minimize this include cooling-system inserts in the 3D–printed part or through the aluminum molding base. Simply applying compressed air can also speed cooling.

How did 3D printing compare with traditional mold making?

Method                 Cost            Time
Traditional             $800         10 days
FDM                        $350            2 days
SAVINGS                  56%              80%

Stratasys End Arm Tooling


Tools Without Tooling

3D printed tools, molds and tool masters add a new layer of cost efficiency and flexibility to the factory floor. Not only can you cost-effectively produce tools for prototype testing and manufacturing low volumes of final parts, you can create made-to-order assembly tools customized for each task. In addition, you can create a leaner manufacturing environment, enabling quick production of tools, when and where they’re needed to speed the manufacturing process and reduce costs.

Learn More

BMW Fdm Jig Hands - Jigs and Fixtures

Jigs & Fixtures

Optimized assembly tools, made to order

Improve manufacturing efficiency with job-specific jigs and assembly fixtures, 3D printed on demand in just hours. 3D printing tools directly from CAD data, on-demand, saves time, lowers costs and reduces inventory requirements. In addition, you can easily create customized lightweight, ergonomic tools that increase workflow efficiency.

Learn More

Injection Molding 3 - Connex3 Refresh

Injection Molding

3D printed Injection molds

Imagine producing injection molds without costly CNC tools. With Stratasys thermoplastics and photopolymers, you can quickly 3D print injection molds to evaluate prototype parts or produce low volumes of end use parts. This is especially useful to test the design, fit and function of products before mass production. If changes are required, new mold iterations can be 3D printed in just a few hours at minimal cost.

Learn More

Agilus30 - Jelly Shoe - Bend 2

End-Use Parts

3D print customized, low volume durable parts with fine details and smooth surface finishes

Stratasys additive manufacturing enables you to 3D print strong, functional final parts on demand directly from CAD data. Because the part is created digitally layer by layer, complex geometries and sophisticated features that would be difficult to produce using traditional manufacturing methods are now easily achieved with Stratasys additive manufacturing. Producing end use parts with Stratasys technology not only dramatically reduces your production costs and delivery times, it also reduces inventory while creating exciting new supply chain efficiencies and new business models.

Learn More