Thermoforming

3D Printing Digital Manufacturing Tooling Applications

3D Printing for Plastic Forming Molds

For lower production volumes, 3D printing can reduce the time and expense associated with conventional machining processes. You can produce accurate molds with an automated, unattended process and eliminate the need for fixturing, setup and operation of CNC machines.

Thermoforming With PolyJet or FDM

Overview

Thermoforming is the collection of manufacturing methods that heat and form sheets of extruded plastic. It is a relatively simple process that starts with heating a plastic sheet to a pliable state. Once softened, the sheet is forced against a mold with the desired shape using different methods: In vacuum forming, a vacuum is drawn through tiny holes in the mold. In pressure forming, air pressure is applied to the surface.

Thermoforming is mainly used in the packaging industry. However, it is not limited to small products; hot tubs and refrigerator door panels are two examples of relatively large thermoformed parts.

Virtually any thermoplastic available as extruded sheet stock may be used to thermoform prototypes or manufactured parts. Wall thicknesses can range from foils to thick-gauge stock — thicknesses ranging from 0.0005 to 0.5 in. (0.0127 to 12.7 mm) — with no molding stresses to combat. Vacuum forming part and tooling costs tend to remain reasonable for large parts.

Preparing tools for vacuum forming can be costly and time consuming. The tools are usually made of aluminum for large production operations. Wooden tools are sometimes used for small production series. Regardless of material, tooling requires the time and labor associated with setting up and operating a milling machine. If machining is unavailable onsite, tooling may be outsourced, slowing time to market and potentially increasing design expenses.

Because thermoforming doesn’t require extreme heat or pressure, 3D printing (also called additive manufacturing) is a viable alternative. Although tool life will not equal that of aluminum, the materials available with PolyJet or FDM Technology are ideal for prototyping and short-run manufacturing. Depending on the tool material and part material, tool life can range from 100 to 1,000 parts.

3D printing can eliminate much of the time and labor associated with machining vacuum-forming tools. Data preparation is completed in minutes, so tool construction can begin immediately after tool design. Automated, unattended operations eliminate the time needed for fixturing, setup and operation of CNC machines. FDM and PolyJet offer the option to design vent holes into the mold, eliminating the labor and potential unevenness of manual drilling. FDM further allows building the mold as a porous structure for finely distributed vacuum draw.

Application Checklist

PolyJet or FDM patterns are a best fit for thermoforming when:

  • Smooth parts are required
  • Challenging characteristics include deep draws or organic shapes
  • Multiple designs are required
  • Lead time is short

Benefits of PolyJet and FDM patterns for thermoforming include:

  • Built–in vent holes to eliminate drilling
  • Speed and reduced cost
  • Smooth parts with little or no finishing
  • Stability, eliminating heat distortion of the tool

Steps

  1. Prepare the 3D–printed tool: Print your thermoforming tool directly from the CAD file on an FDM or PolyJet system. Depending on technology and geometry, some finishing work may be necessary for the smoothest possible tool. This consideration is more important the thinner the thermoforming material.
  2. Place and heat the plastic sheet: Clamp the extruded plastic sheet stock in its frame above the tool. Apply heat until it is malleable.
  3. Prestretch: Introducing air between the tool and plastic sheet improves the consistency of wall thickness across the part.
  4. Raise the tool to meet the plastic sheet.
  5. Form the part: Pull a vacuum through the tool to draw the plastic sheet tightly to the tool’s surface.

Application Outline — PolyJet

Thermoforming molds built with PolyJet 3D printing are ready to use straight from the printer. The excellent surface quality eliminates the need for post processing, even when parts must have smooth surfaces. Accurate printing allows for vent holes to be designed nearly anywhere on the tool, promoting even draw.

Application Outline — FDM

The inherent porosity of tools 3D printed on an FDM system means drilling is unnecessary. Customizing the internal structure to reduce the amount of material used allows for additional time and cost savings. This custom interior can also be used to adjust the porosity around features such as deep draws.

Stratasys ABS–M30 material is suitable for most vacuum-forming applications. It offers mechanical properties that exceed the requirements of most thin-gauge sheets. The FDM process also offers materials that can withstand the high-temperature forming required for some thermoforming materials, such as polycarbonate, HDPE and Kydex. These FDM materials offer increased resistance to thermal degradation, often resulting in extended tool life. Their increased compression resistance makes them suitable for higher-pressure forming of thicker materials.

How does FDM compare with traditional tooling methods?

Method

Cost

Time

Fiber Layup $580 4 days
FDM $380 2 days
SAVINGS $200 (34%) 50%
Stratasys End Arm Tooling

ToolingTools Without Tooling

3D printed tools, molds and tool masters add a new layer of cost efficiency and flexibility to the factory floor. Not only can you cost-effectively produce tools for prototype testing and manufacturing low volumes of final parts, you can create made-to-order assembly tools customized for each task. In addition, you can create a leaner manufacturing environment, enabling quick production of tools, when and where they’re needed to speed the manufacturing process and reduce costs.

Learn More

BMW Fdm Jig Hands - Jigs and Fixtures

Jigs & FixturesOptimized assembly tools, made to order

Improve manufacturing efficiency with job-specific jigs and assembly fixtures, 3D printed on demand in just hours. 3D printing tools directly from CAD data, on-demand, saves time, lowers costs and reduces inventory requirements. In addition, you can easily create customized lightweight, ergonomic tools that increase workflow efficiency.

Learn More

Injection Molding 3 - Connex3 Refresh

Injection Molding3D printed Injection molds

Imagine producing injection molds without costly CNC tools. With Stratasys thermoplastics and photopolymers, you can quickly 3D print injection molds to evaluate prototype parts or produce low volumes of end use parts. This is especially useful to test the design, fit and function of products before mass production. If changes are required, new mold iterations can be 3D printed in just a few hours at minimal cost.

Learn More

Agilus30 - Jelly Shoe - Bend 2

End-Use Parts3D print customized, low volume durable parts with fine details and smooth surface finishes

Stratasys additive manufacturing enables you to 3D print strong, functional final parts on demand directly from CAD data. Because the part is created digitally layer by layer, complex geometries and sophisticated features that would be difficult to produce using traditional manufacturing methods are now easily achieved with Stratasys additive manufacturing. Producing end use parts with Stratasys technology not only dramatically reduces your production costs and delivery times, it also reduces inventory while creating exciting new supply chain efficiencies and new business models.

Learn More

FDM Technology Banner

FDM Technologyfrom Stratasys

PolyJet Technology Banner

PolyJet Technologyfrom Stratasys

desktop-metal-3d-printing-technology-process

Metal Printing Technologyfrom Desktop Metal